

Frederik Kaputa

Overview

- Background
- Virtualization types on x86
- Introduction to OpenVZ
- OpenVZ Installation / Configuration
- VE Load Demonstration

Virtualization Overview

Virtualization

- Why virtualization
- Technology
- Performance
- Usability

Virtualization Types

Different types of virtualization

- Emulation
- Paravirtualization
- Native Virtualization
- OS Level Virtualization

Emulation

- Emulates the systems hardware
- 100% Emulators can emulate other CPUs
- Emulators use JIT to speed up
- Examples:

VMWare, Qemu, Bochs

Emulation

ADVANTAGES

- Can emulate different CPUs
- Unmodified OS as guest

DISADVANTAGES

- Slow(er)
- Limited virtual servers per system

- Uses a Hypervisor / Virtual machine monitor
- Guests need to be modified
- Major performance increase
- Examples:

Xen, UML

Paravirtualization

ADVANTAGES

- Runs very fast
- Less resource overhead then emulation

DISADVANTAGES

- Modified Guest kernel / drivers
- (Limited Guests)

Native Virtualization

- Intel VT, AMD-V
- Guests no longer need to be modified
- A bit slower then Paravirtualization
- Examples:

Xen, KVM

OS Level Virtualization

- Also known as containers
- Share the same kernel
- Lower overhead
- Best possible performance regarding resource management
- Examples:

Solaris Zones, Linux-VServer and OpenVZ

OS Level Virtualization

ADVANTAGES

- Highest density of running guest
- Native speed

DISADVANTAGES

- Runs 1 kernel for all VE/VPS
- Less suitable for testing purposes

Emulation

Emulates HW, Test platform, Slowest

Para/native virtualization

Higher performance, Limited # servers

OS Level

 High density, Native speed, Resource management, Single kernel

OpenVZ

OpenVZ

- Runs a modified Linux Kernel
- Works with Virtual Environments (VE)
- Provides utilities for VE / resource management

OpenVZ - VE

- Virtual Environment provides an isolated execution environment
- Looks and feels like a separate physical server
- Has its own processes (init), filesystem, users, network interfaces, routing tables, firewall rules

OpenVZ - Kernel

Modified Linux kernel with the following additional features:

- Enables virtualization and isolation of VE
- Resource management (subsystem limits)
 - Two level disk quota
 - "Fair" CPU scheduler
 - User Beancounters
- Checkpointing (freezing)

OpenVZ - Installation

- Kernel installation via YUM / RPM
- VZ Tools installation
- Template installation

 Quick install guide: http://wiki.openvz.org/Quick_installation

OpenVZ - Templates

- Building Block for VEs
- Template metadata
 - List of packages included
 - Location of package repositories
 - Distribution specific scripts
- Template Cache
 - Precreated template usually from the template metadata
 - Delivers faster provisioning of new VE

Use Cases

- Server consolidation
- Development and testing
- Educational
- Hosting

Use Cases

- Numproc, numtcpsock
- numproc
- Educational
- Hosting